Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Drug Delivery Letters ; 13(2):83-91, 2023.
Article in English | EMBASE | ID: covidwho-20236526

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease caused by coronavirus. Devel-oping specific drugs for inhibiting replication and viral entry is crucial. Several clinical trial studies are underway to evaluate the efficacy of anti-viral drugs for COVID-19 patients. Nanomedicine formulations can present a novel strategy for targeting the virus life cycle. Nano-drug delivery systems can modify the pharmacodynamics and pharmacokinetics properties of anti-viral drugs and reduce their adverse effects. Moreover, nanocarriers can directly exhibit anti-viral effects. A number of nanocarriers have been studied for this purpose, including liposomes, dendrimers, exosomes and decoy nanoparticles (NPs). Among them, decoy NPs have been considered more as nanodecoys can efficiently protect host cells from the infection of SARS-CoV-2. The aim of this review article is to highlight the probable nanomedicine therapeutic strategies to develop anti-viral drug delivery systems for the treatment of COVID-19.Copyright © 2023 Bentham Science Publishers.

2.
Cytotherapy ; 25(6 Supplement):S109, 2023.
Article in English | EMBASE | ID: covidwho-20236255

ABSTRACT

Background & Aim: Liposomes are spherical-shaped vesicles composed of one or more lipid bilayers. The ability of liposomes to encapsulate hydro- or lipophilic drugs allowed these vesicles to become a useful drug delivery system. Natural cell membranes, such as Bioxome, have newly emerged as new source of materials for molecular delivery systems. Bioxome are biocompatible and GMP-compliant liposome-like membrane that can be produced from more than 200 cell types. Bioxome self-assemble, with in-process self-loading capacity and can be loaded with a variety of therapeutic compounds. Once close to the target tissue, Bioxome naturally fuse with the cell membrane and release the inner compound. Orgenesis is interested in evaluating the potential of Bioxome as new drug delivery system for treatment of several diseases, including skin repair, local tumour or COVID19. Methods, Results & Conclusion(s): Bioxome were obtained from adipose- derived Mesenchymal Stem Cells, with a process of organic- solvent lipid extraction, followed by lyophilization and sonication assemblage. During the sonication process, Bioxome were charged or not with several cargos. Size distribution of empty Bioxome was detected by Particle Size Analyzer (NanoSight). Electron Microscopy (EM) was performed to assess Bioxome morphology. Lipid content was evaluated by electrospray ionization system. Dose response in vitro test on human lung fibroblasts treated or not with Bioxome encapsulating a specific cargo (API) against COVID19 were performed. NanoSight analysis showed that nanoparticle size in Bioxome samples ranged between 170+/-50 nm, with a concentration ranging between 109-1010+/-106 particles/mL. EM clearly showed the double phospholipid layers that composes the Bioxome. Stability study demonstrated that Bioxome are stable in size and concentration up to 90 days at +4Cdegree or even at RT. No change in size between encapsulated Bioxome with small size (~340 Da) cargo vs empty Bioxome was observed up to 30 days storage. Lipidomic analysis approach revealed that the yield of lipids and their composition are satisfactory for a therapeutic product using Bioxome. Lastly, in the in vitro model of COVID19, Bioxome encapsulating API effectively saved cells from death (20x vs untreated cells) and at lower doses of API than these of non-encapsulated cargo (0.005 microM vs 0.1 microM). Bioxome seems to be an excellent candidate for liposome mimetic tool as drug delivery system for targeting specific organs and diseases treatment.Copyright © 2023 International Society for Cell & Gene Therapy

3.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20235541

ABSTRACT

Background: Neutrophil extracellular traps (NETs) are composed of processed chromatin bound to granular and selected cytoplasmic proteins and released by neutrophils. NETs consist of smooth filaments composed of stacked nucleosomes. Fully hydrated NETs have a cloud-like appearance and occupy a space 10-15-fold larger than the volume of the cells they originate from. DNases are the enzymes that cleave extracellular DNA including NETs. Together with their protective role in microbial infections, NETs are involved in multiple pathological processes and represent key events in a variety of pathologies including cancer, autoimmunity, and cardiovascular disease. Sites of NETs concentration are dangerous for the host if the process of NETs formation becomes chronic or the mechanism of NETs removal does not work. NETosis has been linked to the development of periodontitis, cystic fibrosis, type 2 diabetes, COVID-19 or rheumatoid arthritis as well as cancer progression. Purpose(s): Thus, the destruction of NETs is of primary significance in many pathologies. In our approach, we are focusing on mimicking one of the natural mechanisms of destroying excessive NETs by delivering deoxyribonuclease I to the specific site of pathological NETs accumulation by modifying the nanoparticles using an anti-nucleosome monoclonal antibody (2C5). The antibody is specific to nucleosomes and can recognize histones in NETs. DNase I is U.S. Food and Drug Administration (FDA)-approved active component and is commonly used in therapeutic methods of modern medicine for cystic fibrosis to clear extracellular DNA fibers in the lungs and systemic lupus erythematosus. Recent findings have also shown the effectiveness of DNase I in the digestion of NETs. However, the low serum stability and fast deactivation by environmental stimuli have been considered as the limiting factors for clinical applications of DNase I, which can be overcome by its targeted specific delivery in pharmaceutical nanocarriers. Method(s): In this study, we generate NETs in vitro using human neutrophils and HL-60 cells differentiated into granulocyte-like cells. We used interleukin-8, lipopolysaccharide from E.Coli (LPS), phorbol myristate acetate (PMA), and calcium ionophore A23187 (CI) to generate the NETs. We confirmed the specificity of 2C5 toward NETs by ELISA, which showed that it binds to NETs with the specificity like that for purified nucleohistone substrate. We further utilized that feature to create two delivery systems (liposomes and micelles) for DNAse I enzyme to destroy NETs, which was confirmed by staining NETs with SYTOX Green dye and followed by flow cytometric measurements and microscopic images. Conclusion(s): Our results suggest that 2C5 could be used to identify and visualize NETs and serve as a ligand for NET-targeted diagnostics and therapies. Also, we proved that our carrier can successfully deliver DNase to NETs to provide their degradation.

4.
Mol Pharm ; 20(7): 3494-3504, 2023 07 03.
Article in English | MEDLINE | ID: covidwho-20243366

ABSTRACT

PEGylated lipid nanoparticle-based Covid-19 vaccines, including Pfizer's BNT162b2 and Moderna's mRNA-1273, have been shown to stimulate variable anti-PEG antibody production in humans. Anti-PEG antibodies have the potential to accelerate the plasma clearance of PEGylated therapeutics, such as PEGylated liposomes and proteins, and compromise their therapeutic efficacy. However, it is not yet clear whether antibody titers produced by PEGylated Covid-19 vaccines significantly affect the clearance of PEGylated therapeutics. This study examined how anti-PEG IgM levels affect the pharmacokinetics of PEGylated liposomal doxorubicin (PLD) and compared the immunogenicity of a lipid nanoparticle formulation of linear DNA (DNA-LNP) to standard PEG-HSPC liposomes. DNA-LNP was prepared using the same composition and approach as Pfizer's BNT162b2, except linear double-stranded DNA was used as the genetic material. PEGylated HSPC-based liposomes were formulated using the lipid rehydration and extrusion method. Nanoparticles were dosed IM to rats at 0.005-0.5 mg lipid/kg body weight 1 week before evaluating the plasma pharmacokinetics of clinically relevant doses of PLD (1 mg/kg, IV) or PEGylated interferon α2a (Pegasys, 5 µg/kg, SC). Plasma PEG IgM was compared between pre- and 1-week post-dose blood samples. The results showed that anti-PEG IgM production increased with increasing PEG-HSPC liposome dose and that IgM significantly correlated with the plasma half-life, clearance, volume of distribution, and area under the curve of a subsequent dose of PLD. The plasma exposure of Pegasys was also significantly reduced after initial delivery of 0.005 mg/ml PEG-HSPC liposome. However, a single 0.05 mg/kg IM dose of DNA-LNP did not significantly elevate PEG IgM and did not alter the IV pharmacokinetics of PLD. These data showed that PEGylated Covid-19 vaccines are less immunogenic compared to standard PEGylated HSPC liposomes and that there is an antibody threshold for accelerating the clearance of PEGylated therapeutics.


Subject(s)
COVID-19 , Nanoparticles , Rats , Humans , Animals , Liposomes , BNT162 Vaccine , COVID-19 Vaccines , Immunoglobulin M , Polyethylene Glycols/pharmacokinetics , DNA , Phosphatidylcholines
5.
Pharm Nanotechnol ; 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2321997

ABSTRACT

Viral diseases are one of the major causes of mortality worldwide. The emergence of pandemics because of the Covid virus creates a dire need for an efficient mechanism to combat the disease. Viruses differ from other pathogenic infections; they render the host immune system vulnerable. One of the major challenges for developing antivirals is the resistance developed by the overuse of drugs, which is inevitable as most viral diseases require a large number of doses. Viral infection detection, prevention, and treatment have significantly benefitted from developing several innovative technologies in recent years. Nanotechnology has emerged as one of the most promising technologies because of its capacity to deal with viral infections efficiently and eradicate the lagging of conventional antiviral drugs. This review briefly presents an overview of the application of nanotechnology for viral therapy.

6.
Tetrahedron ; 129 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2303647

ABSTRACT

Historically organometallic compounds have been used to cure certain diseases with limited applications. Although bismuth belongs to the category of heavy metals, many of its derivatives have found applications in modern drug discovery research, mainly because of its low toxicity and higher bioavailability. Being an eco-friendly mild Lewis acid, compounds having bismuth as a central atom are capable of binding several proteins in humans and other species. Bismuth complexes demonstrated antibacterial potential in syphilis, diarrhea, gastritis, and colitis. Apart from antibacterial activities, bismuth compounds exhibited anticancer, antileishmanial, and some extent of antifungal and other medicinal properties. This article discusses major synthetic methods and pharmacological potentials of bismuth complexes exhibiting in vitro activity to significant clinical performance in a systematic and timely manner.Copyright © 2022 Elsevier Ltd

7.
Eur J Immunol ; 53(7): e2249941, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2301549

ABSTRACT

The first worldwide article reporting that injections of synthetic nonreplicating mRNA could be used as a vaccine, which originated from a French team located in Paris, was published in the European Journal of Immunology (EJI) in 1993. It relied on work conducted by several research groups in a handful of countries since the 1960s, which put forward the precise description of eukaryotic mRNA and the method to reproduce this molecule in vitro as well as how to transfect it into mammalian cells. Thereafter, the first industrial development of this technology began in Germany in 2000, with the founding of CureVac, which stemmed from another description of a synthetic mRNA vaccine published in EJI in 2000. The first clinical studies investigating mRNA vaccines in humans were performed as collaboration between CureVac and the University of Tübingen in Germany as early as 2003. Finally, the first worldwide approved mRNA vaccine (an anti-COVID-19 vaccine) is based on the mRNA technologies developed by BioNTech since its 2008 foundation in Mainz, Germany, and earlier by the pioneering academic work of its founders. In addition to the past, present, and future of mRNA-based vaccines, the article aims to present the geographical distribution of the early work, how the development of the technology was implemented by several independent and internationally distributed research teams, as well as the controversies on the optimal way to design or formulate and administer mRNA vaccines.


Subject(s)
COVID-19 Vaccines , Vaccines, Synthetic , Humans , Animals , COVID-19 Vaccines/genetics , Germany , Pancreas , Paris , RNA, Messenger/genetics , Mammals
8.
Journal of Drug Delivery Science and Technology ; 74 (no pagination), 2022.
Article in English | EMBASE | ID: covidwho-2267490

ABSTRACT

Over the past decade, compared to all other macromolecules lipid-based nanocarriers have proven to be an excellent carrier and delivery system for various pharmaceutical drugs of poor bioavailability. In addition to that, they exhibit exceptional qualities such as minimal toxicity, economical scale-up production, great biocompatibility, and high drug loading efficiency. In this study, we have discussed the various types of lipid nanoparticles, such as liposomes, nanostructured lipid carriers, solid lipid nanoparticles, and lipid polymer hybrid nanoparticles. We have also conferred in detail, the composition, shape and size, methods of preparation, advantages, and certain limitations associated with these lipid-based nanocarriers. Additionally, we have exclusively accounted for several examples of lipid-based nanomedicines that have either been approved and commercialized or are under the different phases of clinical trials. The current review overall focuses on the up-to-date research that has recently been published in view of developing lipid-based nanocarriers for various biological applications, including gene therapy, breast cancer therapy, and vaccine development.Copyright © 2022

9.
Acta Pharmaceutica Sinica B ; 2023.
Article in English | EMBASE | ID: covidwho-2288641

ABSTRACT

Messenger RNA (mRNA) is the template for protein biosynthesis and is emerging as an essential active molecule to combat various diseases, including viral infection and cancer. Especially, mRNA-based vaccines, as a new type of vaccine, have played a leading role in fighting against the current global pandemic of COVID-19. However, the inherent drawbacks, including large size, negative charge, and instability, hinder its use as a therapeutic agent. Lipid carriers are distinguishable and promising vehicles for mRNA delivery, owning the capacity to encapsulate and deliver negatively charged drugs to the targeted tissues and release cargoes at the desired time. Here, we first summarized the structure and properties of different lipid carriers, such as liposomes, liposome-like nanoparticles, solid lipid nanoparticles, lipid-polymer hybrid nanoparticles, nanoemulsions, exosomes and lipoprotein particles, and their applications in delivering mRNA. Then, the development of lipid-based formulations as vaccine delivery systems was discussed and highlighted. Recent advancements in the mRNA vaccine of COVID-19 were emphasized. Finally, we described our future vision and perspectives in this field.Copyright © 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences

10.
Acta Pharmaceutica Sinica B ; 2023.
Article in English | EMBASE | ID: covidwho-2288517

ABSTRACT

In recent years, owing to the miniaturization of the fluidic environment, microfluidic technology offers unique opportunities for the implementation of nano drug delivery systems (NDDSs) production processes. Compared with traditional methods, microfluidics improves the controllability and uniformity of NDDSs. The fast mixing and laminar flow properties achieved in the microchannels can tune the physicochemical properties of NDDSs, including particle size, distribution and morphology, resulting in narrow particle size distribution and high drug-loading capacity. The success of lipid nanoparticles encapsulated mRNA vaccines against coronavirus disease 2019 by microfluidics also confirmed its feasibility for scaling up the preparation of NDDSs via parallelization or numbering-up. In this review, we provide a comprehensive summary of microfluidics-based NDDSs, including the fundamentals of microfluidics, microfluidic synthesis of NDDSs, and their industrialization. The challenges of microfluidics-based NDDSs in the current status and the prospects for future development are also discussed. We believe that this review will provide good guidance for microfluidics-based NDDSs.Copyright © 2023 Chinese Pharmaceutical Association and Institute of Materia Medica, Chinese Academy of Medical Sciences

11.
Molecules ; 28(5)2023 Feb 28.
Article in English | MEDLINE | ID: covidwho-2257760

ABSTRACT

Porcine circovirus 2 (PCV2) infection is one of the most serious threats to the swine industry. While the disease can be prevented, to some extent, by commercial PCV2a vaccines, the evolving nature of PCV2 necessitates the development of a novel vaccine that can compete with the mutations of the virus. Thus, we have developed novel multiepitope vaccines based on the PCV2b variant. Three PCV2b capsid protein epitopes, together with a universal T helper epitope, were synthesized and formulated with five delivery systems/adjuvants: complete Freund's adjuvant, poly(methyl acrylate) (PMA), poly(hydrophobic amino acid), liposomes and rod-shaped polymeric nanoparticles built from polystyrene-poly(N-isopropylacrylamide)-poly(N-dimethylacrylamide). Mice were subcutaneously immunized with the vaccine candidates three times at three-week intervals. All vaccinated mice produced high antibody titters after three immunizations as analyzed by the enzyme-linked immunosorbent assay (ELISA), while mice vaccinated with PMA-adjuvanted vaccine elicited high antibody titers even after a single immunization. Thus, the multiepitope PCV2 vaccine candidates designed and examined here show strong potential for further development.


Subject(s)
Circovirus , Swine Diseases , Viral Vaccines , Swine , Animals , Mice , Antibodies, Viral , Swine Diseases/prevention & control , Peptides , Epitopes , Adjuvants, Immunologic
12.
Acta Pharm Sin B ; 2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2268265

ABSTRACT

Despite the global administration of approved COVID-19 vaccines (e.g., ChAdOx1 nCoV-19®, mRNA-1273®, BNT162b2®), the number of infections and fatalities continue to rise at an alarming rate because of the new variants such as Omicron and its subvariants. Including COVID-19 vaccines that are licensed for human use, most of the vaccines that are currently in clinical trials are administered via parenteral route. However, it has been proven that the parenteral vaccines do not induce localized immunity in the upper respiratory mucosal surface, and administration of the currently approved vaccines does not necessarily lead to sterilizing immunity. This further supports the necessity of a mucosal vaccine that blocks the main entrance route of COVID-19: nasal and oral mucosal surfaces. Understanding the mechanism of immune regulation of M cells and dendritic cells and targeting them can be another promising approach for the successful stimulation of the mucosal immune system. This paper reviews the basic mechanisms of the mucosal immunity elicited by mucosal vaccines and summarizes the practical aspects and challenges of nanotechnology-based vaccine platform development, as well as ligand hybrid nanoparticles as potentially effective target delivery agents for mucosal vaccines.

13.
Pharmaceutics ; 15(3)2023 Mar 08.
Article in English | MEDLINE | ID: covidwho-2253773

ABSTRACT

The use of nucleotides for biomedical applications is an old desire in the scientific community. As we will present here, there are references published over the past 40 years with this intended use. The main problem is that, as unstable molecules, nucleotides require some additional protection to extend their shelf life in the biological environment. Among the different nucleotide carriers, the nano-sized liposomes proved to be an effective strategic tool to overcome all these drawbacks related to the nucleotide high instability. Moreover, due to their low immunogenicity and easy preparation, the liposomes were selected as the main strategy for delivery of the mRNA developed for COVID-19 immunization. For sure this is the most important and relevant example of nucleotide application for human biomedical conditions. In addition, the use of mRNA vaccines for COVID-19 has increased interest in the application of this type of technology to other health conditions. For this review article, we will present some of these examples, especially focused on the use of liposomes to protect and deliver nucleotides for cancer therapy, immunostimulatory activities, enzymatic diagnostic applications, some examples for veterinarian use, and the treatment of neglected tropical disease.

14.
OpenNano ; 9, 2023.
Article in English | Scopus | ID: covidwho-2239672

ABSTRACT

The global anxiety and economic crisis causes the deadly pandemic coronavirus disease of 2019 (COVID 19) affect millions of people right now. Subsequently, this life threatened viral disease is caused due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, morbidity and mortality of infected patients are due to cytokines storm syndrome associated with lung injury and multiorgan failure caused by COVID 19. Thereafter, several methodological advances have been approved by WHO and US-FDA for the detection, diagnosis and control of this wide spreadable communicable disease but still facing multi-challenges to control. Herein, we majorly emphasize the current trends and future perspectives of nano-medicinal based approaches for the delivery of anti-COVID 19 therapeutic moieties. Interestingly, Nanoparticles (NPs) loaded with drug molecules or vaccines resemble morphological features of SARS-CoV-2 in their size (60–140 nm) and shape (circular or spherical) that particularly mimics the virus facilitating strong interaction between them. Indeed, the delivery of anti-COVID 19 cargos via a nanoparticle such as Lipidic nanoparticles, Polymeric nanoparticles, Metallic nanoparticles, and Multi-functionalized nanoparticles to overcome the drawbacks of conventional approaches, specifying the site-specific targeting with reduced drug loading and toxicities, exhibit their immense potential. Additionally, nano-technological based drug delivery with their peculiar characteristics of having low immunogenicity, tunable drug release, multidrug delivery, higher selectivity and specificity, higher efficacy and tolerability switch on the novel pathway for the prevention and treatment of COVID 19. © 2022 The Author(s)

16.
Eur J Pharm Biopharm ; 2022 Nov 25.
Article in English | MEDLINE | ID: covidwho-2241838

ABSTRACT

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS), characterized by uncontrolled lung inflammation, is one of the most devastating diseases with high morbidity and mortality. As the first line of defense system, macrophages play a crucial role in the pathogenesis of ALI/ARDS. Therefore, it has great potential to selectively target M1 macrophages to improve the therapeutic effect of anti-inflammatory drugs. L-arginine plays a key role in regulating the immune function of macrophages. The receptors mediating L-arginine uptake are highly expressed on the surface of M1-type macrophages. In this study, we designed an L-arginine-modified liposome for aerosol inhalation to target M1 macrophages in the lung, and the anti-inflammatory drug curcumin was encapsulated in liposomes as model drug. Compared with unmodified curcumin liposome (Cur-Lip), L-arginine functionalized Cur-Lip (Arg-Cur-Lip) exhibited higher uptake by M1 macrophages in vitro and higher accumulation in inflamed lungs in vivo. Furthermore, Arg-Cur-Lip showed more potent therapeutic effects in LPS-induced RAW 264.7 cells and the rat model of ALI. Overall, these findings indicate that L-arginine-modified liposomes have great potential to enhance curcumin treatment of ALI/ARDS by targeting M1 macrophages, which may provide an option for the treatment of acute lung inflammatory diseases such as coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome and middle east respiratory syndrome.

17.
Int J Pharm ; 630: 122421, 2022 Nov 19.
Article in English | MEDLINE | ID: covidwho-2240296

ABSTRACT

The unprecedented outbreak of severe acute respiratory syndrome-2 (SARS-CoV-2) worldwide has rendered it one of the most notorious pandemics ever documented in human history. As of November 2022, nearly 626 million cases of infection and over 6.6 million deaths have been reported globally. The scientific community has made significant progress in therapeutics and prevention for the management of coronavirus disease (COVID-19), including the development of vaccines and antiviral agents such as monoclonal antibodies and antiviral drugs. Although many advancements and a plethora of positive results have been obtained and global restrictions are being uplifted, obstacles in efficiently delivering these therapies, such as their rapid clearance, suboptimal biodistribution, and toxicity to organs, have yet to be addressed. To address these drawbacks, researchers have attempted applying nanotechnology-based formulations. Here, we summarized the recent data about COVID-19, its emergence, pathophysiology and life cycle, diagnosis, and currently-available medications. Subsequently, we discussed the progress in lipid nanocarriers, such as liposomes in infection detection and control. This review provides critical insights into the design of the latest liposomal-based formulations for tackling the barriers to detecting, preventing, and treating SARS-CoV-2.

18.
Recent Pat Nanotechnol ; 2021 07 20.
Article in English | MEDLINE | ID: covidwho-2235685

ABSTRACT

BACKGROUND: The novel coronavirus 2019 (COVID-19) infection has caused the global emergence of coronavirus in humans during the last 12 months. Till May 11, 2021, the confirmed global COVID-19 cases and deaths reached 158551526 and 3296855, respectively. METHODS: Goblet cells and ciliated cells in the nose act as the initial infection site of SARS-CoV-2. Thus, mucus immunity is important to protect from infection. The outburst of SARS-CoV-2 infection can be halted only when an effective vaccine will be developed. RESULTS: Globally, over 100 different vaccines are under investigation, including DNA vaccines, RNA vaccines, inactivated virus vaccines, adenovirus-based vaccines, recombinant/ subunit protein vaccines, peptide vaccines, and virus-like particles etc. Inactivated virus vaccines and mRNA, and adenovirus-based vaccines have moved fast into clinical trials. CONCLUSION: Vaccines containing spike protein of SARS-CoV as subunit could effectively prevent binding of coronavirus to the host cell and membrane fusion. Thus, spike protein can be used as a major target for subunit vaccine preparation.

19.
Int J Mol Sci ; 24(2)2023 Jan 13.
Article in English | MEDLINE | ID: covidwho-2230678

ABSTRACT

The established blood donation and transfusion system has contributed a lot to human health and welfare, but for this system to function properly, it requires a sufficient number of healthy donors, which is not always possible. Pakistan was a country hit hardest by COVID-19 which additionally reduced the blood donation rates. In order to address such challenges, the present study focused on the development of RBC substitutes that can be transfused to all blood types. This paper reports the development and characterization of RBC substitutes by combining the strategies of conjugated and encapsulated hemoglobin where magnetite nanoparticles would act as the carrier of hemoglobin, and liposomes would separate internal and external environments. The interactions of hemoglobin variants with bare magnetite nanoparticles were studied through molecular docking studies. Moreover, nanoparticles were synthesized, and hemoglobin was purified from blood. These components were then used to make conjugates, and it was observed that only the hemoglobin HbA1 variant was making protein corona. These conjugates were then encapsulated in liposomes to make negatively charged RBC substitutes with a size range of 1-2 µm. Results suggest that these RBC substitutes work potentially in a similar way as natural RBCs work and can be used in the time of emergency.


Subject(s)
Blood Substitutes , COVID-19 , Magnetite Nanoparticles , Humans , Liposomes , Oxygen/metabolism , Molecular Docking Simulation , Hemoglobins/metabolism , Erythrocytes/metabolism
20.
Vaccines (Basel) ; 11(1)2022 Dec 24.
Article in English | MEDLINE | ID: covidwho-2229425

ABSTRACT

BACKGROUND: The adventure of the mRNA vaccine began thirty years ago in the context of influenza. This consisted in encapsulating the mRNA coding for a viral protein in a lipid particle. We show how the mRNA encoding S protein has been modified for that purpose in the context of the anti-SARS-CoV-2 vaccination. RESULTS: by using data coming from genetic and epidemiologic databases, we show the theoretical possibility of fragmentation of this mRNA into small RNA sequences capable of inhibiting important bio-syntheses such as the production of beta-globin. DISCUSSION: we discuss two aspects related to mRNA vaccine: (i) the plausibility of mRNA fragmentation, and (ii) the role of liposomal nanoparticles (LNPs) used in the vaccine and their impact on mRNA biodistribution. CONCLUSION: we insist on the need to develop lipid nanoparticles allowing personalized administration of vaccines and avoiding adverse effects due to mRNA fragmentation and inefficient biodistribution. Hence, we recommend (i) adapting the mRNA of vaccines to the least mutated virus proteins and (ii) personalizing its administration to the categories of chronic patients at risk most likely to suffer from adverse effects.

SELECTION OF CITATIONS
SEARCH DETAIL